

The First

New solution from the most resistant Microbe in the world

Background

Rising concern, The Blue-light

- High energy visible (HEV) light
- Not only the eyes, but also skin needs to be protected from blue light radiation.

One of the most resistant microbe Known 'Deinococcus sp.'

The world's toughest bacterium in The Guinness book of World Records

Deinococcus sp.' is well known as a 'Super bug'

Over 2 billion years, It survives strongly from the radiation which is treated as the worst condition for all organism

The most interesting bacteria in science today

studying and understanding its mechanisms can lead to nuclear waste pick up and medical uses associated with cancer.

Deinococcus sp. is first discovered in 1956 in a can of ground meat. It had been **treated with large doses of radiation to remove all hazardous bacteria** from the product .

Deinococcus sp. is one of the **extraordinary microorganisms** which can **survive against extreme conditions** such as UV irradiation, gamma-ray and oxidative stress.

They have **special ability to recover damaged DNA** caused by strong UV irradiation or ROS **towards its inborn state**

Space Sci Rev DOI 10.1007/s11214-017-0365-5

SPECIAL COMMUNICATION

Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond

Hervé Cottin¹ • Julia Michelle Kotler^{2,3,4} • Daniela Billi⁵ • Charles Cockell⁶ • René Demets⁷ • Pascale Ehrenfreund⁸ • Andreas Elsaesser^{9,10} • Louis d'Hendecourt¹¹ • Jack J.W.A. van Loon^{12,13} • Zita Martins¹⁴ • Silvano Onofri¹⁵ • Richard C. Quinn¹⁶ • Elke Rabbow¹⁷ • Petra Rettberg¹⁷ • Antonio J. Ricco¹⁶ • Klaus Slenzka^{18,19} • Rosa de la Torre²⁰ • Jean-Pierre de Vera²¹ • Frances Westall²² • Nathalie Carrasco²³ • Aurélien Fresneau¹ • Yuko Kawaguchi²⁴ • Yoko Kebukawa²⁵ • Dara Nguyen¹ • Olivier Poch¹ • Kafila Saiagh¹ • Fabien Stalport¹ • Akihiko Yamagishi²⁴ • Hajime Yano²⁶ • Benjamin A. Klamm¹⁶

Received: 30 September 2015 / Accepted: 5 April 2017 © The Author(s) 2017. This article is published with open access at Springerlink.com

- ¹³ European Space Research and Technology Centre (ESTEC), TEC-MMG, Life & Physical Science, Instrumentation and Life Support Laboratory, European Space Agency (ESA), Keplerlaan 1, 2200 AG, Noordwijk, The Netherlands
- ¹⁴ Department of Earth Science and Engineering, Imperial College London, SW7 2AZ, London, UK
- ¹⁵ Università della Tuscia, Viterbo, Italy
- ¹⁶ NASA Ames Research Center, Moffett Field, CA, 94035, USA
- 17 Institute of Aerospace Medicine, Radiation Biology Department, Research Group Astrobiology, DLR, Koeln, Germany
- ¹⁸ Jacobs Univ., Bremen, Germany
- ¹⁹ OHB, Bremen, Germany
- ²⁰ INTA, Instituto Nacional de Técnica Aeroespacial, Crta. Ajalvir, km. 4, 28850 Torrejón de Ardoz, Madrid, Spain
- 21 Institute of Planetary Research, Management and Infrastructure, Research Group Astrobiology Laboratories, DLR, Berlin, Germany
- ²² CNRS, CBM, UPR 4301, rue Charles Sadron, 45071 Orléans, France
- ²³ Université Versailles St-Quentin, UPMC Univ. Paris 06, CNRS, LATMOS, 11 Blvd. d'Alembert, 78280 Guyancourt, France
- ²⁴ Department of Applied Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan
- ²⁵ Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan
- 26 Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara 252-5210, Japan

Ref. Space as a tool for astrobiology.., Space science reviews, July 2017, volume209

Including NASA & JAXA, France, Netherland, Germany, Italy, Spain, USA and Japan – 8 countries 26 Research agents are researching the *Deinococcus* sp. as a tool for Astrobiology in space.

CrossMark

DNA Repairing

Proof of DNA repairing (Pulse-field gel electrophoresis (PFGE)

0h - DNA of *D. radiodurans* was completely destroyed after exposure to the high energy $(7 \text{ kGy/1h}) \gamma$ -ray.

3h ~ 4.5h - indicates the recovery of *D. radiodurans*' DNA in chronological order without any outside interferences.

Ref. Oxidative stress resistance in Deinococcus radiodurans Microbiology and Molecular Biology reviews, March 2011, Vol.75

LABIO's Deinococcus sp.

Boost your formulation with Carotenoid colorless ingredient with better efficacy

Effect of 'The First'

Anti-Pollution Effect1. Anti-oxidant

% of Control

Concentration (mg/ml)

Fermented Deinococcus sp. extract shows free radical scavenger effect

Anti-Pollution Effect2. Anti-inflammation

% of CTL

NO assay

Concentration (mg/ml)

Fermented Deinococcus sp. extract inhibits NO production

Anti-Pollution Effect3. Anti-blue light

Cumulative absorbance (400-500nm)

Blue light protection

Fermented Deinococcus sp. extract has blue-light protection effect

Anti-Pollution Effect4. Whitening

Melanin assay

Concentration (mg/ml)

% of CTL

Fermented *Deinococcus* sp. extract shows 50% more α -MSH inhibition ability

UV Recovery

* 35 Relative luciferase activity (fold increase) 30 25 20 15 *P<0.05 10 5 0 DREAM-Luc + + + Fermented Deinococcus extract (100 µg/ml) + UVB (20 mJ/cm²) + +

Dream system luciferase

Thymine dimer dot-blot

*Total gDNA : Total genomic DNA was visualized by staining the transferred membrane with methylene blue staining solution

Fermented Deinococcus sp. extract reduces the DNA damage from UVB

Anti-pollution ingredient _ The First

The ingredient from the first organism 'Deinococcus sp.'

Blue light protection ingredient

Carotenoid colorless ingredient

Strong antioxidant effect

INCI name	Deinococcus Ferment Extract Filtrate, Butylene glycol, 1,2- Hexanediol
CFDA	Micrococcus Lysate, Butylene glycol, 1,2-Hexanediol
Define	Carotenoids colorless ingredient with Anti-blue light and Multi functional effect by microbial fermentative production.
Physical characteristic	Transparent light pink to light brown Water soluble
Function	 ✓ Anti-oxidant activity ✓ Anti-inflammation ✓ Anti-blue light ✓ Whitening